
Phase diagram and critical properties of the (1+1)-dimensional Ashkin-Teller model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1984 J. Phys. A: Math. Gen. 17 1531

(http://iopscience.iop.org/0305-4470/17/7/021)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 08:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/17/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 17 (1984) 1531-1545. Printed in Great Britain 
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Central Research Institute for Physics, H-1525 Budapest, POB 49, Hungary 

Received 28 September 1983 

Abstract. The (1 + 1)-dimensional Ashkin-Teller model is studied by the renormalisation 
group method and by the finite lattice extrapolation technique. The possible phases and 
their boundaries in an extended space of couplings are determined from the degeneracy 
structure of the low-lying levels in the thermodynamic limit. The critical behaviour is 
investigated for ferromagnetic couplings using increasing block sizes in the renormalisation 
transformation. The line of fixed points and its bifurcation at the Potts fixed point is studied. 

1. Introduction 

Recently we have witnessed a growing interest in the study of the Hamiltonian version 
of two-dimensional ( 2 ~ )  lattice spin models. By taking the time-continuum limit the 
classical 2~ models can be mapped onto one-dimensional ( ID)  quantum problems, 
where external fields are introduced, and the strength of these fields plays the role of 
the temperature (for a review see Kogut 1979). The reason for dealing with the 
Hamiltonian version of the models is that approximate treatments are sometimes easier 
in I D  and in most cases the anisotropy in the 2~ models is irrelevant for the critical 
properties. For example the 2~ Ising model is equivalent to the I D  Ising model in a 
transverse field for any value of the couplings. On the other hand the 2~ Potts model 
is equivalent to its Hamiltonian version only in the self-dual point (Stephen and Mittag 
1972), but the critical properties of the two models are the same. For several models, 
however, there is no rigorous justification of such an equivalence. Moreover in the 
anisotropic limit the signs of the different couplings can be changed separately and 
the Hamiltonian version can have a complicated phase structure. In these cases it is 
interesting to investigate the I D  models for their own sake. 

One of the most interesting of these models is the Ashkin-Teller model. The 2~ 

classical model has several conjectured and exact relations for its rather rich phase 
structure (line of continuously varying critical indices, bifurcation point in the phase 
diagram, lines of king critical behaviour) (Knops 1975, Kadanoff 1977). The Hamil- 
tonian version shows the same behaviour for appropriately chosen couplings and, in 
addition to that, has an even richer phase structure for antiferromagnetic couplings. 
As was shown by Kohmoto et a1 (1981), there exists on the antiferromagnetic side a 
surface of critical behaviour, the border of which consists of lines of Kosterlitz-Thouless 
transition points, and a line of first-order transition points. This phase diagram was 
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obtained from mapping the Ashkin-Teller model onto the exactly soluble six-vertex 
model for special values of the couplings and by studying the effect of different operators 
that appear as perturbation. The results were also confirmed by high-temperature 
series expansion, although, especially near the bifurcation point, the series estimates 
differ somewhat from the conjectured values. 

In this paper the renormalisation group technique and the finite size extrapolation 
method will be applied to a more general Hamiltonian version of the Ashkin-Teller 
model to determine the boundaries of the phases numerically, and the type of critical 
behaviour. 

In the renormalisation group technique a self-dual transformation is applied to 
obtain the phase diagram for ferromagnetic couplings. The phase structure is similar 
to that of the restricted model studied by Kohmoto et a1 (1981). The critical behaviour 
is studied by this transformation and by non-dual block transformation by increasing 
the number of spins in a block. The calculated critical properties show slow convergence 
to the conjectured values. 

Better results are obtained in the finite size extrapolation method, where the energy 
of the ground state and the first excited states of rings (up to six spins per ring) were 
determined. From these data the phase diagram and the value of the correlation length 
exponent could be calculated to quite a good accuracy. At the bifurcation point of 
the phase diagram, where the model is equivalent to the four-state Potts model, the 
finite lattice extrapolation predicts a value for the exponent U much closer to the 
conjectured value than other extrapolation procedures, since we use information from 
an extended space of couplings. Along the line of continuously varying critical indices, 
the error of the extrapolation is small for - 0 . 6 S A 2 / h l  S0.6 and the critical indices 
are very close to the conjectured ones. In the antiferromagnetic region the extrapola- 
tion procedure gives further evidence for the existence of a ‘critical fan’. 

The content of the paper is as follows. In 0 2 the formulation of the Hamiltonian 
version of the Ashkin-Teller model is given and the structure of the low-lying levels 
which are relevant both in the renormalisation group (RG) transformation and the 
finite size scaling method is discussed. In § §  3 and 4 the results of the RG transformation 
and the finite lattice extrapolation are presented, respectively. Finally, § 5 contains a 
short discussion. 

2. Formalism 

First the Hamiltonian version of the Ashkin-Teller model is presented. In the classical 
Ashkin-Teller model the system can be at any lattice site in any of the four possible 
states, denoted by il), 12), 13) and 14). The energy of the system depends on the 
nearest-neighbour configuration. The interaction energy between neighbouring spins 
is - + A l  for the I l l ) ,  122), 133) and the 144) configurations, $ A l  for the 113) and 124) 
configurations, while it is + A 2  for the 112), 123), 134) and the 141) configurations. In 
what follows in this section all energies will be shifted by - + A 2  in order to simplify 
some of the formulae. 

In the anisotropic model the couplings are different in the horizontal and 
vertical directions. Denoting these two directions by x and T, the couplings are A;, A;, 
A ;  and A;. The Hamiltonian version is obtained from the time-continuum limit, when 
the lattice spacing in the T direction goes to  zero, while at the same time the couplings 
A ;  and A; go to infinity. The Hamiltonian, which is the transfer matrix in this limit, 
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will contain spin flip terms, in addition to the usual classical energy term. The Hamil- 
tonian can be written (Sblyom 1981) in the form 

H=HA+Hh (2.1) 

where HA is the classical energy which depends on the neighbouring configurations, 
while the transverse field term, which flips the spins, can be characterised by two 
couplings h, and h2 and is givzn by the relations 

H h  11) = -h1/2)- h2i3) - hl/4) 

In the Ising spin representation the Hamiltonian has the form 

and 

The states ll), 12), 13) and 14) correspond to U* = 1, 7’ = 1; uz = 1, r 2  = -1; uz = -1, 
r z  = -1 and uz = -1, 7’ = 1 respectively. 

Sometimes it is more convenient to use the following linear combinations of the 
states: 

which are eigenstates of Hh: 

In this representation the Ashkin-Teller coupling part will flip the neighbouring spins, 
e.g.: 

HA 11’1‘) = - 4 A  $ . ‘4’)  -4h213’3‘) -+A 114‘2’) 

HA 12’4’) = - 4 A l 1 1 ’ l ’ )  -:A 113’3’) -4A214’2’) 

HA 13’3’) = -:A21 1‘ 1’) -;A 112’4’) - 4 A  114’2’) 

HA 14’2’) = -{All 1’1’) -$A212’4’) -4A113’3’). 

(2.7) 

Similar relations hold for the states 11’2’), 12’1’), 13’4’) and /4’3‘), for l1’3’), 12’2’), 
13’1’) and 14’4’) as well as for /1’4’), )2’3’), 13’2’) and 14’1’). 

A different representation of the Hamiltonian uses the angles 8, = 0, $T, T, $T for 
the states [ I ) ,  12), 13) and 14) respectively. The spin flip terms are given in terms of 
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the operators pi which act as 

In this representation the Hamiltonian has the form 

%= -E [$A, cos(ej - e,+,) + $ A ~  COS 2(e, - e j+~) ] -Z  (2hl COS pi + h2 COS 2pj). (2.9) 
i i 

In deriving this model the couplings A , ,  A 2 ,  h, and h2 are all free. Special restrictions 
can be obtained if the time-continuum limit is taken in a special way. E.g. Kohmoto 
et a1 (1981) use the model where 

A ~ / A I =  h2Ih1. (2.10) 

This plane contains most of the interesting features of the classical model, and in 
a special case can be mapped onto the exactly solved XXZ model. Their model has 
two variables p and A, and the following correspondence is true with our variables: 

h, = 1, h2 = A, d l  = P, :A2 = AB. (2.11) 1 

A different time-continuum limit was used by Drugowich de Felicio and Koberle 
(1982) in their study of the critical behaviour of the Ashkin-Teller model. They 
assumed h2 = 0 where many interesting features are missing. 

The RG transformation showed that the (2.10) plane is not an invariant plane, 
therefore in the RG method the whole form of the Hamiltonian was used. However, 
in the finite size scaling calculation for the sake of simplicity we also confine ourselves 
to the surface A 2 / A 1  = h2/hl.  

In what follows the excitation spectrum of the Hamiltonian will be studied. It is 
an important, preliminary task, since in the Hamiltonian study the lower-lying states 
play a central role. 

First of all it can be seen from the representation of the Hamiltonian given in 
(2.5)-(2.7) that the eigenstates belong to four orthogonal subspaces, characterised by 
the sum of the spins along a chain modulo 4. Thus the states 11’1’ . . . 1’), 12‘1’ . . . 1’), 
13’1’.. . 1’) and 14’1’.. . 1’) belong to different subspaces which will be called lst, 2nd, 
3rd and 4th subspace, respectively. It is easily seen that the 2nd and 4th subspaces 
are degenerate since the Hamiltonian is invariant under the overall change /2’)++14’). 
The kth energy level of the ith subspace will be denoted by 

Let us now turn to the symmetry classification of the low-lying states of finite chains 
using both periodic boundary condition and free ends. In each subspace the lowest-lying 
levels are either symmetric (in the case of periodic boundary condition they have 
momentum k = 0, while for a free chain they have left-right symmetry) or antisymmetric 
(they have momentum k = T in the case of periodic boundary condition, while for a 
free chain they are antisymmetric under reflection to the centre of the chain). A 
superscript s or a denotes whether the state is symmetric or antisymmetric. 

According to the degeneracy structure and sequence of low-lying levels four different 
regions can be distinguished in the space of couplings. In this paper we look at A l  > 0 
only, allowing the other couplings to have both positive and negative values. For 
chains with even number of sites the energy differences are even functions of h, and 
therefore results for hl > 0 only will be shown. Figure 1 shows a sketch of the different 
regions calculated for the simplest case of two spins on a chain with periodic boundary 
condition. The location of the boundaries between these regions depends on the size 
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Figure 1. Regions in the space of couplings with different sequence and degeneracy for 
the low-lying energy levels. 

of the chain and on the boundary condition. In the thermodynamic limit, however, 
the same phase diagram is recovered, irrespective of the boundary condition. 

The level sequence in the different regions is as follows: 
(1) Four low-lying states can be separated from the rest of the states having higher 

energy. These four states belong to the four different subspaces and they are all 
symmetric. The lowest level belongs always to the 1st subspace. For the sequence of 
the other three levels there are two possibilities: 

( l a )  EL1 <E;, ,  <E; , ,  = ES4.1 (2.12) 

(2.13) 

The two regions are separated by a surface where E;,l =E;, ,  = i.e. the 
behaviour is Potts-like. In the plane h, = 0 below region ( la)  the two lowest levels 
become degenerate, i.e. E ; , ,  = E:., < E;,l = E;.l. 

(2) In this region it is not possible to separate four low-lying states. The lowest 
level is still a non-degenerate E;,l, but the next two levels are both doubly degenerate. 
One of them is E;,l = E:,,, the other is E”, ,  = E;,,, i.e. an antisymmetric state from 
the third subspace is now lower in energy as the symmetric state and it is degenerate 
with the second symmetric state of the 1st subspace, or it is E;,,=E:,,, depending 
on the values of the couplings. 

(3) In this region the lowest level is two-fold degenerate, E;,,  = E;,1 or E:,l = E;,l, 
depending on whether the length of the chain N is N=41 or N=2(21+1) ,  where 1 
is integer. 

The last region is the simplest. The two-fold degenerate ground state can easily 
be constructed and an antiferromagnetic ordering can easily be demonstrated. This 
will be done in P 4 by using finite chain results. 

The situation is more complicated in the other regions, where in the thermodynamic 
limit new degeneracies may arise. In region (1) where the four lowest levels of a finite 
segment of chain can be mapped onto a new object with the Ashkin-Teller symmetry, 
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renormalisation group transformation can be used to determine the phase boundaries 
and critical behaviour, while in region (2) where renormalisation would lead to a much 
more complicated model, finite size scaling will be used. 

3. Renormalisation group transformation 

In the renormalisation group transformation for quantum spin systems (for a review 
see Pfeuty et a1 1982) the Hamiltonian is split into an unperturbed part containing 
non-interacting cells of spins and a perturbation containing the intercell couplings. In 
the RG transformation the low-lying levels of a cell are mapped onto the states of a 
new object which will be the new cell variable. A simple RG transformation into a 
Ashkin-Teller like model which has the symmetries of the original model is possible 
in region (1) only and we will restrict ourselves to this domain. Even in this domain 
the results are not very reliable near the boundary to region (2),  where the next level 
comes close to the four low-lying ones and can influence the critical behaviour. We 
will present the results in the sector where all couplings are positive since this sector 
is invariant under the RG transformation. The other parts of region ( 1 )  do not show 
any new structure; they can be mapped onto the above sector by the RG transformation. 

Depending on the choice how the Hamiltonian is split, different RG transformations 
can be defined. In this paper we will consider two of them. A self-dual RG transforma- 
tion which conserves the duality is used to determine the phase structure, while the 
block transformation method is used to determine the critical indices. In the last 
method different sizes of the blocks were used in the transformation, in order to see 
the convergence and to obtain evidence from the series of results for the existence of 
a line of fixed points. 

3.1. Duality conserving decimation 

This type of RG transformation for the Ising model has been proposed by Fernandez- 
Pacheco (1979) and later was used for the Potts model by Horn et a1 (1980), Hu 
(1980), S6lyom and Pfeuty (1981), Igl6i and S6lyom (1983b). The Ashkin-Teller 
model being also a self-dual model, the transformation can also be used. In this paper 
we apply the method for the simplest case with two spins in a cell. The non-interacting 
cells are chosen such that every second spins are fixed in a given state and they interact 
with their left neighbour only. The non-fixed spins are eliminated by the RG procedure. 
In the calculation of the state of a cell the representation in terms of states [ I ) ,  12), 13) 
and 14) is convenient to use. 

Fixing one end spin for example in the state Il), the eigenfunction of the cell has 
the form: 

(3.1) VI = ( a ,  11) + 4 2 )  + 4 3 )  + a414))1 1). 

The coefficients and the 

-E -'A 
2 1  

-h1 

- h2 

-h1 

energies are determined by the eigenvalue problem: 

- hl - h2 -h1 

-E + $ A ,  -h1 - h2 
= 0. 

-h1 - € + + A l  -hl  
- h2 -h1 -E + $ A z  

(3.2) 
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In region (1) the lowest eigenstate is 

where the coefficients are given by 

and Eo is the lowest eigenvalue of (3.2). Similarly, if the end spin is fixed in another 
state, the lowest-energy cell state is 

or 

or 

These states will be identified as the four states of the cell-spin. 
The recursion relations for the different couplings can be obtained from the 

condition that all matrix-elements between these low-lying states should be the same 
before and after the transformation: 

2a, +2a,a, 2a2+2a: 
1 + 2a: + a: ’ hi = h2 1 + 2a: + a: 

h’, = hl 

1 -a :  1 -2a:+a: 
1 +2a:+a:, A i =  A 2  1 +2a:+a:. 

A ;  = A ,  
(3.8) 

These recursion relations have three types of trivial fixed point solutions yielding 
three different phases in region (1). The regions of attraction of these fixed points are 
shown in figure 2. 

(I) Paramagnetic region-the couplings scale to hl = arbitrary, h2 = arbitrary, A ,  = 
0, A 2  = 0. The corresponding ground-state of the Hamiltonian is unique; all the spins 
are in the 11’)=1(11)+12)+13)+14)) state. 

(11) Partially ordered region-the couplings scale to h, = 0, h2 = qbitrary, A ,  = 0, 
A 2  = arbitrary. The ground state is two-fold degenerate; it is II i( l /J2) (ll)i + 13)i) or 

(111) Fully ordered region-the couplings scale to h,  = 0, h2 = 0, A I  = arbitrary, 
A 2  = arbitrary. All the spins are in the same state, but it can be any of the four states 
and therefore the ground state is four-fold degenerate. 

The critical surfaces which separate the different phases are characterised by the 
following non-trivial fixed points. 

ni(l/J2) (12)i + 14)~).  
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Figure 2. Phase diagram of the Hamiltonian Ashkin-Teller model for all couplings positive. 
The model is paramagnetic in region I, partially ordered in region I1 and ferromagnetically 
ordered in region HI. I , ,  12, I 3  and P give the locations of the non-trivial fixed points of 
the self-dual RG transformation. 

(i) The points of the surface separating the paramagnetic and the fully ordered 
region scale to: h ,  =0,  h 2 = 0 ,  A l  =0 ,  A2=0, with however 

hl /Al  = 0.25, hzlhi  = O ,  A2/  A ,  = 0. (3.9) 

It is an Ising like fixed point denoted by I1 in figure 2. The thermal eigenvalue is 2, 
the corresponding critical exponent v is 1. 

(ii) The points of the critical surface separating the paramagnetic and the partially 
ordered region scale to: hl = 0, A l  = 0, h2 = 0, h2 =arbitrary, with however 

h1/h2 ~ 0 . 1 2 5 ,  A 1 / A 2  = O .  (3.10) 

It is also an Ising like fixed point denoted by 12. The thermal eigenvalue is 2, the 
critical exponent v is 1. 

(iii) The points of the surface separating the fully ordered region and the partially 
ordered region scale to: h! = 0, h2 = 0, A ,  = 0, A 2  =arbitrary, with however 

hl /Al  =o,  h2/ A 1 = 0.5. (3.11) 

(iv) The points of the line where the three phases coexist scale to: hl = 0, h2 = 0, 

hl /Al  = 0.25, h 2 / h l  = 0.25, h2/h1 = 1. (3.12) 

This is the critical point of the four-state Potts model denoted by P in figure 2. The 
thermal eigenvalue is 2.5, the critical exponent v is 0.756, not very close to the 
conjectured v = 5. 

The structure of the phase diagram and the character of the fixed points are in 
agreement with the result obtained by Knops ( 1975) for the 2~ classical Ashkin-Teller 
model. Our results can also be compared on the h l /  h2 = A , / A z  surface to that calculated 
by Kohmoto et af (1981). The boundaries of the different phases on this surface are 

It is also an Ising like fixed point denoted by 13, the dual of the fixed point (ii).  

h l  = 0, h2  = 0, with however 
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also sketched in figure 2. In the three-phase region the border lines are dual to  each 
other, and even in this simple approximation agree fairly well with the values given 
by Kohmoto et al. Our approximate RG method, however, fails to indicate what is 
known from mapping to  the six-vertex model, that the fixed points I1 and P are 
connected by a line of fixed points with continuously varying critical indices. The 
results can be improved by using larger and larger cells in the transformation. Our 
earlier calculation on the Potts model (Igl6i and S6lyom 1983b) showed, however, 
that the convergence of the results of the self-dual RG transformation is extremely 
slow and it is very doubtful whether it is possible to extrapolate from those values. 
On the other hand, the results of the block-transformation method converge faster to  
the conjectured values. Therefore, we used this method for the Ashkin-Teller model, 
to obtain some evidence for the existence of a line of fixed points. 

3.2. Block-transformation method 

In this type of the RG transformation, the unperturbed part of the Hamiltonian contains 
all the field terms and the intra-block couplings, while the perturbation is the coupling 
between neighbouring blocks. The recursion equations for the simplest case with two 
spins per cell have been derived in an earlier paper by one of the authors (S6lyom 
1981). It was shown there that for the Ashkin-Teller model, like for other self-dual 
models, the block-transformation is dual to the decimation transformation and there- 
fore the two transformations give equivalent results for the critical behaviour. 

Starting with the Hamiltonian with four couplings A , ,  A 2 ,  h, and h2 the RG 

transformation generates two new couplings denoted by x and y, but further renormali- 
sation steps will not increase the number of couplings. Instead of equation (2.7), the 
action of HA on pairs of spins should be given as 

or 

(3.13) 

(3.14) 

and similar relations for the other combinations of neighbouring spins. The unrenor- 
malised.value of x and y is x = y = 1. 

We have performed the calculations with N = 2 ,3  and 4 sites in the blocks in region 
(1) of the A , ,  A,, hl, h2 coupling space starting with x = y = 1. The phase structure of 
the model is similar to that shown in figure 2 obtained by a different RG transformation, 
only the locations of the critical surfaces are somewhat different. The trivial fixed 
points characterising the three phases are as follows. 

(I) h, =arbitrary, h,=arbitrary, A ,  =0 ,  A2=0,  x = O ,  y = O .  This gives rise to a 
paramagnetic state. 
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(11) hl = 0, h2 = arbitrary, A I  = 0, A 2  = arbitrary, x = 1, y = 1 gives a partially 

(111) hl = 0, h2 = 0, A I  =arbitrary, A 2  =arbitrary, x = 1, y = 1 is the fixed point of 

The non-trivial fixed points separating the three different phases are 
(i) h l=O, h2=0, A l = O ,  A2=0, x=l, y = l  with however h l /A l=au ,  h 2 / A l = 0 ,  

(ii) hl = 0, A ,  = 0, A 2  = 0, h2 = arbitrary, x = 0, y = 0 with however hl/A2 = i a ,  

(iii) h l=O,  h2=0,  A l = O ,  A2=arbitrary, x = l ,  y = l  with however h2/Al=ia, 

(iv) h l=O,  h2=0, A l = O ,  A2=0, x=y=finite,  withhoweverA2/Al=1, h 2 / h l = l ,  

ordered state. 

the fully ordered state. 

A 2 / A l = 0  

A l / A 2 = 0  

hl /A ,  = O  

hl /Al  =ab 
where a and b are numbers of the order of unity. 

Their values are given in table 1 together with the critical exponent U calculated 
from largest eigenvalues A, of the linearised recursion relations near the fixed points 
by the relation Y =log N/log A ,  where N is the size of the block. Both for the Ising 
and the Potts fixed points v converges to the exactly known or conjectured values. 
The three Ising like fixed points show the same behaviour. 

Table 1. The position of the fixed points, and the correlation length critical exponent Y 
at the fixed points of the Ashkin-Teller model for different size of the blocks used in the 
RG transformation. A,, denotes the next to leading eigenvalue at the fixed points (i) and 
(iv). 

Exact or 
N = 2  N = 3  N = 4  conjectured 

Ising-like a 1.277 1.155 1.105 1 
V 1.48 1.31 1.24 1 

fixed points h12 0.81 0.71 0.70 1 

b 1.189 1.152 1.136 1 

1.03 0.90 0.85 5 

points A l l  1.18 1.32 1.44 1 

Potts fixed x = y 1.193 1.212 1.219 
V 2 

The existence of a line of fixed points should show up in the existence of a marginal 
operator, i.e. the second largest eigenvalue Ar2  should converge to unity. Unfortunately 
this tendency is not seen from the limited number of points given in table 1. 

4. Finite size scaling 

In the past few years finite size scaling has become a powerful tool in investigating I D  
quantum systems (Hamer and Barber 1981). This method requires the solution of 
the eigenvalue problem for finite rings. If the mass gap, i.e. the energy difference 
between the ground state and the first excited state, is G,(K), where N is the size of 
the ring, and K is the coupling, then the location of a conventional phase transition 
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point is the limit of K h  values, at which the scaled gap ratio is unity: 

(N- l)GN-I(Kk)/NGN(Kh) = 1. (4.1) 

This procedure assumes that at the critical point the energy gap vanishes as 1/N. 
If a system exhibits a line or a surface of critical points, then this region is 

characterised by the property that everywhere on this surface the scaled gap goes to 
a finite value: 

lim NGN(K) =finite. 
N-m 

(4.2) 

This behaviour has to be contrasted to that of a non-critical system, where the scaled 
gap tends to zero or infinity, in the high-temperature or low-temperature phases, 
respectively. 

The critical indices can also be determined by finite size scaling. The correlation 
length critical exponent Y can be calculated from the slope of the Callan-Symanzik 
P-function at the critical point. For the p-function the form proposed by Roomany 
and Wyld (1981) is used: 

(4.3) 
Note that the gap G calculated in this paper is proportional to the couplings while 
Roomany and Wyld used the dimensionless gap. This explains the form given in (4.3). 

In the following the result of finite size scaling on the Ashkin-Teller model is 
presented. As mentioned before the surface given by (2.10) contains the Potts point 
and goes through all the possible phases in the phase diagram, therefore we will present 
the results only for this characteristic plane of the total coupling space. At first the 
phase diagram, then the critical exponent will be discussed. 

4.1.  Phase diagram 

The extrapolated phase diagram is drawn in figure 3. Besides the three phases which 
have appeared in region (1) in the renormalisation group treatment, there are two new 
regions: the ‘critical fan’ denoted by V, and the antiferromagnetically ordered region 
denoted by IV. Notice that this phase diagram is the same as that given by Kohmoto 
et a1 (1981). 

The parameter P used by them is P = A1/4h l  in the language of this paper. The 
boundaries in the phase diagram where only conventional second-order transitions 
take place (i.e. for A J A l  > -l/h) were determined from extrapolating the finite-lattice 
phase transition points defined by equation (4.1). To illustrate the accuracy of the 
procedure the scaled gaps for a fixed value of A J A 1  as a function of hl/Al are shown 
for different chain lengths in figure 4. The crossing points which determine the critical 
value of h J h l  are shown in figure 5 .  The broken curves were obtained by calculating 
the mass gap between the 1st and the 2nd (or 4th) subspace, while the dotted curves 
represent thectransition between the 1st and 3rd subspaces. 

For -1/J2 < h 2 / A 1  s 1 there is only one transition point; all the four lowest-energy 
levels become degenerate in the thermodynamic limit at the same point hl /Al  = $, as 
self-duality would require. 
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Figure 3. Phase diagram obtained from finite lattice 
extrapolation for couplings restricted to the surface 
A 2 / A ,  = h,/h,. For points without error bar the 
error is smaller than the size of the point. 

Figure 4. Scaled gap function NGN for A 2 / A l  = 
-0.55 for different chain lengths N as a function of 
h, /A , .  The gap is calculated between the second 
and first subspaces. 

For A 2 / h l  > 1, however, there is a partially ordered phase, where only the 1st and 
the 3rd subspaces are degenerate, and at the phase boundaries the degeneracy changes 
by a factor of two. The error in the extrapolation (shown by error bars in figure 3) 
is rather small, unless we are close to the critical fan. In the three-phase region, crosses 
show the result of the self-dual Rc-method presented in 0 3. Finally we mention 
that the boundaries of the three-phase region can be rather well approximated by the 
following function: 

where (h l /A l )u  and ( h l / h l ) /  denote the upper and lower lines respectively. 
When A2/h l  < O  but h 2 / A l  > -1/h the scaled gap functions tend to a finite value 

for one value of h l / h l ,  only, as seen in figure 4. However as h 2 / h l  approaches -l/& 
the slope of the scaled gap functions at the transition point goes to zero. Just at 
h 2 / A l  = -1/& the slope of the extrapolated curve is zero, indicating a phase transition 
of infinite order i.e. a Kosterlitz-Thouless transition. For -1 < h 2 / A l  < -l/h there 
exists an interval in h l / h l  where condition (4.2) is fulfilled, i.e. the @-function will 
vanish identically. How this ‘critical fan’ develops as the chain length increases can be 
seen in figure 6. For large values of h l / h l  the scaled gap goes to infinity, for small 
values of hl/Al it goes to zero. In between there is a region where the scaled gap 
tends to  a finite value. The boundaries of this region are characterised by the fact that 
the scaled gap has zero slope, i.e. at the boundary of the ‘critical fan’ the transition is 
of the Kosterlitz-Thouless type. The critical fan occupies part of region (2) where 
new degeneracies occur with respect to region ( l ) ,  but it extends also partly into region 

When h z / A l  = -1 the critical fan extends to the whole h l / A l  line, but a level 
crossing occurs along this line giving rise to an antiferromagnetically ordered state 
beyond it. The two-fold degenerate ground state is 

(1). 
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Figure 5. Critical couplings in the A 2 / h ,  = h 2 / h ,  
plane satisfying (4.1) for different chains. The 
broken curves are  calculated from the gap between 
the 1st and 2nd subspaces, while the dotted ones 
from the gap between the 1st and 3rd subspaces. 
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Figure 6.Scaled gap function NGN for h 2 / h ,  = 
-0.75 for different chain lengths. An extended 
critical region develops between the points where 
the scaled gap has zero slope. 

taking the upper or lower signs, respectively. The energy per site is 

Eo= h2+ah2. (4.6) 

As noted by Kohmoto et al, the transition into the antiferromagnetic state is of KDP 

type. Although there is a level crossing which gives rise to a latent heat, the energy 
gap in the antiferromagnetic region vanishes as h 2 / A l  + -1, i.e. the corresponding 
correlation length diverges. For h l / h l  = a  e.g. the following simple form holds for the 
first excitations into the second and third subspaces 

A&( h2 /h l )  = 2[( Az/h  1)'- 1]1'2 
(4.7) 

A E 3 ( A 2 / h l )  = 2AEZ(AZ/hl). 

4.2. The critical exponent U 

In the three-phase region the transitions are of Ising type with v = 1.  In the Potts 
point, however, and for h 2 / h l  < 1, v should be different and vary continuously. Since 
in this part of the phase space the h2 direction is marginal when h,  has its critical 
value, the U exponent can be obtained from the slope of the Callan-Symanzyk 
/3-function (4.3) in the h,  direction 

P(hlIA1) = h - ' [ ( h , l A , )  - ~ ~ l / ~ l ~ c l / ~ ~ l / ~ l ~ c .  (4.8) 
The results obtained from the finite lattice P-functions are shown in figure 7. The 
region beyond h 2 / A 1  = 1 has no meaning as a critical exponent because v here is not 
calculated from a fixed point, but these values can serve as guides how to extrapolate 
in the Potts fixed point. As can be seen in figure 7 the l /v(A2/hl)  curves go to unity 
for large A 2 / h l .  For a range above h 2 / h l  = 1 they increase roughly linearly with a 
slope proportional to [ N ( N -  l)]'", then bend over to a decreasing curve, having zero 
slope at A 2 / A l  = 1. If the extrapolation to N + w  is done from the values at h 2 / A 1  = 1, 
one would get a value v = t for the four-state Potts model. If, however, use is made 
of the region h 2 / h l  > 1 and one extrapolates the straight part of the l / v ( A 2 / A l )  curve 
to & / A 1  = 1 and takes the limit of these points, since the region where the bending 
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Figure 7. Finite lattice results for the critical exponent v. The broken curve is the result 
obtained from the analogy with the six-vertex model. 

occurs shrinks to zero with increasing N, we get 

in good agreement with the conjectured values. 
In the region A 2 / A l  < 1 the finite lattice results for Y converge fast to the exact 

value only for A z / A l  < 0.6-0.7 where 1/ v is a concave function, but due to the bending 
around A 2 / h l  = 1 the convex part is not obtained correctly. The good convergence 
breaks down again at the other end of the critical line where the critical fan appears. 

5. Discussion 

In the present paper the Hamiltonian version of the 2~ Ashkin-Teller model was 
studied assuming ferromagnetic coupling for the two-spin coupling (in the spin rep- 
resentation (2.3)) in the spatial direction, but allowing for arbitrary couplings for the 
other terms. It was shown that the phase diagram is simply an extension of the phase 
diagram derived by Kohmoto et ul (1981) for a particular surface in the coupling 
space, i.e. no new phases appear. 

The boundaries in the phase diagram were determined partially by renormalisation 
group transformation, partially by using finite size extrapolation techniques. The finite 
chain results converge well except for the boundaries of the critical fan, which in the 
extended coupling space is a more extended object. Since everywhere inside this region 
the scaled gap is finite, the boundaries cannot be located as well as for an ordinary 
second-order transition, where the scaled gap is finite at a single point only. 

The renormalisation group treatment does not give very good results for the critical 
behaviour at the Potts point and along the critical line going out of the Potts point. 
Using finite size scaling, however, much better accuracy is achieved if the critical 
behaviour is studied in the extended space of couplings and the Potts point is approached 
only after the N + 00 limit was performed already. The importance of the order of 
limit in finite size procedure has already been pointed out by the authors (Igl6i and 
S6lyom 1983a) in another study of first-order transitions. It will be shown in a separate 
publication that the critical line in the Ashkin-Teller model can be obtained more 
easily if the model is further generalised and the Ashkin-Teller limit is taken only 
after the thermodynamic limit of the generalised model has been performed. 
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